2020

MATHEMATICS - HONOURS

Sixth Paper

(Module - XI)
Full Marks : 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Symbols have their usual meanings.
Group - A
[Vector Calculus - II]
(Marks : 10)

1. Answer any one question :
(a) Verify Stoke's theorem for a vector field defined by $\vec{F}=\left(x^{2}-y^{2}\right) \hat{i}+2 x y \hat{j}$ in the rectangular region in $x y$-plane bounded by the straight lines $x=0, x=5, y=0, y=8$;
(b) Prove that for any scalar function $\varphi(x, y, z)$,

$$
\iiint \vec{\nabla} \varphi d v=\iint \varphi \hat{n} d S
$$

where \hat{n} is the outward drawn unit normal vector to the surface S.
(c) If V is the region bounded by the planes $x=0, y=0, z=0$ and $2 x+2 y+z=4$, then show that
(i) $\iiint_{V} \vec{\nabla} \times \vec{F} d V=-\frac{8}{3} \hat{k}$
(ii) $\iiint_{V} \vec{\nabla} \cdot \vec{F} d V=\frac{16}{3}$ where $\vec{F}=\left(3 x^{2}-8 z\right) \hat{i}-2 x y \hat{j}-8 x \hat{k}$
(d) Verify Green's theorem for the line integral $\oint_{C}\left(x^{2}+x y\right) d x+x d y$, where C is the bounding curve of the region traced by $y=x^{2} \& y=x$.

Group - B

[Analytical Statics - II]
(Marks : 20)
Answer question no. 2 and any one question from the rest.
2. (a) Find the centre of gravity of the arc of the parabola $y^{2}=16 x$ included between the lines $x=0$ and $x=4$.

6
Or,
(b) Find the condition of stability of equilibrium of a mechanical system having one degree of freedom.
3. A solid frustum of a paraboloid of revolution of height h unit and latus rectum 8 unit rests with its vertex on the vertex of a paraboloid of revolution whose latus rectum is 4 unit. Show that the equilibrium is stable if $h<2$.
4. Forces $\vec{X}, 2 \vec{X}, 3 \vec{X}$ act along the vectors $\hat{i}+\hat{j}-\hat{k}, \hat{i}-\hat{j}+\hat{k}$ and $-\hat{i}+\hat{j}+\hat{k}$ respectively. Find the resultant wrench, pitch and intensity.
5. A force \vec{P} acts along the axis of x and another force $n \vec{P}$, where n is a positive integer, acts along a generator of the cylinder $x^{2}+y^{2}=a^{2}$. Show that the central axis lies on the cylinder

$$
\begin{equation*}
n^{2}(n x-z)^{2}+\left(1+n^{2}\right)^{2} y^{2}=n^{4} a^{2} \tag{14}
\end{equation*}
$$

6. State and establish the principle of virtual work for a system of co-planar forces acting on a rigid body.

Group-C
 [Analytical Dynamics of a Particle - II]
 (Marks : 20)

Answer question no. 7 and any one question from the rest.
7. (a) A particle moves with central acceleration μ / r^{3}. Where r is the distance of particle from centre of force. If it be projected from an apse at a distance ' a ' from the centre of force with a velocity equal to $\sqrt{ } 2$ times that in a circle, find the path.
Or,
(b) Classify the equilibrium point for the linear system $A X=\dot{X}$, where $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), X=\binom{x}{y}$ and $\dot{X}=\frac{d X}{d t}$, for different values of the scalars a, b, c and d.
8. A particle of mass M is at rest and begins to move under the action of a constant force \vec{F} in a fixed direction. It encounters the resistance of a stream of fine dust moving in the opposite direction with velocity \vec{u}, which deposits matter on it at a constant rate σ. Show that its mass will be m, when it has travelled a distance $\frac{k}{\sigma^{2}}\left[m-M\left\{1+\log \left(\frac{m}{M}\right)\right\}\right]$ where $k=F-\sigma u$.
[F and u are the magnitudes of the force \vec{F} and the velocity \vec{u} respectively].
9. A small bead starts sliding down a semicircular wire of radius ' a ' with coefficient of friction μ. If it starts with a velocity ' u ' from one extreme point in the upper end, find the time taken to slide down to the lowest point (Assume that the wire is fixed in a horizontal base with its centre upwards and the diameter of the free ends is horizontal). Also find the increased velocity at that point.
10. A particle describes an ellipse under inverse square law about a focus. If it is projected with a velocity of magnitude V from a point at a distance l from the centre of force, find the periodic time. 16
11. Determine the eigenvalues and corresponding eigenvectors of the following linear dynamical system :

$$
\begin{aligned}
& \frac{d x}{d t}=2 x+y \\
& \frac{d y}{d t}=x+2 y
\end{aligned}
$$

Classify its equilibrium points.

